Augmented reality (AR) games, particularly those designed for head-mounted displays, have grown increasingly prevalent. However, most existing systems depend on pre-scanned, static environments and rely heavily on continuous tracking or marker-based solutions, which limit adaptability in dynamic physical spaces. This is particularly problematic for AR headsets and glasses, which typically follow the user’s head movement and cannot maintain a fixed, stationary view of the scene. Moreover, continuous scene observation is neither power-efficient nor practical for wearable devices, given their limited battery and processing capabilities. A persistent challenge arises when multiple identical objects are present in the environment—standard object tracking pipelines often fail to maintain consistent identities without uninterrupted observation or external sensors. These limitations hinder fluid physical-virtual interactions, especially in dynamic or occluded scenes where continuous tracking is infeasible. To address this, we introduce a novel optimization-based framework for re-identifying identical objects in AR scenes using only one partial egocentric observation frame captured by a headset. We formulate the problem as a label assignment task solved via integer programming, augmented with a Voronoi diagram-based pruning strategy to improve computational efficiency. This method reduces computation time by 50% while preserving 91% accuracy in simulated experiments. Moreover, we evaluated our approach in quantitative synthetic and quantitative real-world experiments. We also conducted three qualitative real-world experiments to demonstrate the practical utility and generalizability for enabling dynamic, markerless object interaction in AR environments. Our video demo is available at https://youtu.be/RwptEfLtW1U.
This project was supported by National Science Foundation grants with award numbers 1942531, 2418236, and 2430673.
Last update @ Dec 19, 2025